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3
Number System 

 
  1. Introduction Principle : Let { ( ) : }T n n N  be a set of statements, one for each natural number n. If 

(i), ( )T a  is true for some a N  and (ii) ( )T k  is true implies ( 1)T k   is true for all ,k a  then 
( )T m  is true for all .n a  

  2. The greatest integer function : [ ] is defined by selling [ ]x   the greatest integer not exceeding x, 
for every real x. 

  3. If /a b  and / ,a c  then /a pb qc  (linearity property). 

  4. Euclid's Algorithm : The a and b be two non-zero integers. Then ( , )a b  [gcd of ( , )]a b  exists and is 
unique. Also, there exists integers m and n method ( , ) .a b am bn   

  5. Congruencies : Let a, b in be integers, 0.m   Then we say that a is congruent to b modulo m if, 
/( ).m a b  We denote this by  (mod ).a b m  

  6. Let (mod )a b m  and c d  (mod m) Then 

 (i) (mod )a c b d m    

 (ii) (mod )a c b d m    

 (iii) (mod )ac bd m  

 (iv) (mod )pa qc pb qd m    for all integers p and q. 

 (v) n ma b  mod m for all positive integer m. 
 (vi) ( ) ( )(mod )f a f b m  for every polynomial with integer coefficients. 

  7. An integer 0x  satisfying the linear congruence  

 (mod )ax b m  has a solution. Further more, 

 if 0x  is a solution, then the set of all solutions is precisely 0( ) : ( ).x km Z   

  8. Let N be a positive integer greater than 1, say ....p q rN a b c  where , , ...a b c  are distinct (different 
primes and , , ...p q r  are positive integers. The number of ways in which N can be resolved into two 
factors is  
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1 ( 1)( 1)( 1)...2 p q r    

  9. Number of ways in which a composite number can be resolved into two factors, which are prime to 
each other, is 12n  where n is the number of distinct prime factors in the expression for N. 

10. Let N be a positive integer quarter than 1 and let ...pq q rN a b c  where , , ...a b c  are distinct primes 
and , , ...p q r  positive integers. then the sum of all the divisors in the product is equal to 

1 1 11 1 1. .1 1 1

p q ra b c
a b c

    
  

 

11. the highest power of prime p which is contained in !n  is equal to  

2 3 ...n n n
p p p

                 
 

 where [ ] is the greatest integer function. 
12. Euler's Totient Function : Let N be any positive integer 1.  the number of all positve integers less 

than N and prime to it is denoted by ( ).N  It is obvious (2) 1, (3) 2,     
(4) 2, (5) 4, (6) 2 ...       The function   is called Euler's Totient function. 

 If , , ...a b  are prime to each other, then 

     ( ) ( ). ( )ab a b     

 or       ( ...) ( ) ( ) ( ) ...abcd a b c      

 If                    ...p q rN a b c   
 where , ,a b c  are distinct primes and , ,p q r  are positive integers, then 

    1 1 1( ) 1 1 1 ...N N a b c
              
     

 

 Euler's Theorem : If x be any positive integer prime to N. 

 Then             ( ) 1(mod )Nx N   

13. Fermat's Little Theorem : If p is a prime and n is prime to p then 1 1(mod )pn p  . 

14. Wilson's Theorem : If p is a prime, their 
( 1)! 0(mod )p p   

 Conversely, if ( 1)! 1 0n     ( mod ),n  their n is a prime. 

Example : Calculate 20395 (mod 41).  

Solution : Since 41 is prime and (5, 41) 1,  therefore by Fermat’s        
405 1(mod 41)  

  by division algorithm, 2039 (50 40) 39    

   2039 50.40 39 40 50 39 50 395 5 (5 ) 5 1 .5 (mod 41)    395 (mod 41)  
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  To calculate 395 (mod 41),  we first calculate 5 (mod 41)n  where 2, 4, 8, 16, 32.n   

          25 25 16(mod 41)    

          45 216 10(mod 41)   

          85 100 18(mod 41)   

        165 324 4(mod 41)    

        325 16(mod 41)  

         39 32 4 25 5 .5 .5 .5 16.10.( 16).5    

              33(mod 41)  

             20395 (mod 41) 33.  

Question 1. Find the largest positive integer n such that 3 100n   is divisible by ( 10).n   

Solution : Using modulo ( 10)n   numbers, we see that 

     10 0[mod ( 10)]n n    

  i.e.,            10[mod( 10)]n n    

           3 3( 10) [mod( 10)]n n    

                 1000([mod( 10)]n    

             3 100 ( 1000 100)[mod( 10)]n n      

                 900[mod( 10)]n    

  Now, we want ( 10)n   to divide 3 100,n   implying that ( 10)n   should divide 900.  

  The largest such n is 900 10 890,   as ( 10)n   cannot be greater than | 900 | 900   and 
the greatest divisor of | 900 |  is 900. 

  so the largest positive integer n, such that 3 100n   is divisible by ( 10)n   is 890.n   

Note : 2 2 2900 3 2 5    has 27 divisors an each divisor greater than 10, gives a corresponding value for n 
they are 2, 5, 8, 10, 15, 20, 26, 35, 40, 50, 65, 80, 90, 140, 170, 215, 290, 440 and 890. 
Question 2. When the numbers 19779 and 17997 are divided by a certain three digit number, they leave 

the same remainder. Find this largest such divisor and the remainder. How many such 
divisors are there ?  

Solution : Let  the divisor be d an the remainder be r. 
  The by Euclidean Algorithm, we find 

      119779 dq r       …(1) 

  and     217997 dq r       …(2) 
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  by subtracting Eq. (2) from Eq. (1), we get 

        1 21782 ( )d q q   

   d is a three digit divisor of 1782. 
  therefore, possible values of d are 891, 594, 297, 198. 
  Hence largest three digit divisor is 891 and the remainder is 177. 

Question 3. Find the number of all rational numbers m
n  such hat (i) 0 1,m

n   (ii) m and n are relatively 

prime and (iii) . 25!m n  . 
Solution : It is given that 

22 10 6 1 1 1 1 1 125! 2 3 5 7 11 13 17 19 23m n            
  Thus 25! is the product of powers of 9 prime numbers. 
  The number of ways in which 25! can be written as the product of two relatively prime 

numbers m and n is 92 ,  which leads to 92  factors, exactly half of which, are such that m
n

 is 

less than 1. There are 82  such fractions. 

Question 4. Determine all positive integers n for which 2 1n   is divisible by 3. 

Solution : 2 1 2 1n n n    

  If n is odd, then (2 1)  is a factor. Thus for all odd values of , 2 1nn   is divisible by 3. 

Aliter :          12 2(mod 3)  

         22 1(mod 3)  

         32 2(mod 3)  and so on 

   2 12 2(mod 3)m    and 2 22 (2 ) 4 1mod (3)m m m    

   2 1 2 1 0 mod 3n      if n is odd. 

  and 2 1 1 1 2 mod 3n      if n is even. 

    2 1n   is divisibly by 3 if n is an odd number 
Question 5. Prove that [ ] [2 ] [4 ] [8 ] [16 ] [32 ] 12345x x x x x x       has no solution. 

Solution :        12345 2 4 8 16 32 63x x x x x x x        

                   12345 2019563 21x    

  When 196,x   the L.H.S. of the given equation becomes 12348. 

       20195 196.21 x   
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  Consider x in the interval 31195 , 196 .32
  
 

 the L.H.S. expression of the given equation 

                195 0 390 1 780 3 1560 7 3120 15 6240 31             
                 12342 12345   

  When 31195 ,32x   the L.H.S. is less than 12342. 

   for no value of x, The given equality will be satisfied. 
Question 6. Three consecutive positive integers raised to the first, second and third powers respectively, 

when added, make a perfect square, the square root of which is equal to the sum of the three 
consecutive integers. Find these integers. 

Solution : Let ( 1), , 1n n n   be the three consecutive integers. 

  Then 1 2 3 2 2( 1) ( 1) (3 ) 9n n n n n       

     2 3 2 21 3 3 1 9n n n n n n        

                                3 25 4 0n n n    
                               ( 1)( 4) 0n n n    

                                                     0n   or 1n   or 4,n   

  but 0n   and 1n   will make the consecutive integers 1, 0, 1  and 0, 1, and 2, which 
contradicts the hypothesis that the consecutive integers are all greater than zero. 

  Hence 4,n   corresponding to which the consecutive integers are 3, 4 and 5. 

Question 7. Show that 1997 1997 19971 2 ... 1996    is divisible by 1997. 
Solution : We shall make groups of the terms of the expression as follows : 

1997 1997 1997 1997 1997 1997(1 1996 ) (2 1995 ) ... (998 999 )       

  Here each bracket is of the form 2 1 2 1( )n n
i ia b   is divisible by ( ).i ia b  

  But ( ) 1997i ia b   for all i. 

   Each bracket and hence, their sum is divisible by 1997. 
Question 8. A four digit number has the following properties : 
  (a) It is a perfect square 
  (b) The first two digits are equal 
  (c) The last two digits are equal. 
  Find all such numbers. 
Solution : Let N aabb  be the representation of such a number. 

1 9, 0 9a b     

  Then 1000 100 10 1100 11N a a b b a b      11(100 )a b   
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  Since N is a perfect square, and 11 is a factor of N 
  100aob a b   must be a multiple of 11, i.e., aob should be divisible by 11 where a, o and 

b are digits of 100a b  and hence 11 .b a   
  The last 2 digits of a perfect square where both the digits are equal is only 44. 
  So      4b   
        7a   
     7744N   is the only possibility 

      211 704 11 11 64 88 .n        
   This is the only solution. 

Question 9. Show that 552 1  is divisible by 11. 

Solution :       52 32 ( 1)    (mod 11) 

    5 11 11255 (2 ) ( 1)    (mod 11) 

           1   (mod 11) 

  So        552 1 0   (mod 11) 
   It is a multiple of 11. 

Question 10. The equation 2 9 0x px    has rational roots, where p and q are integers. Prove that the 
roots are integers. 

Solution : 
2 4

,2
p p q

x
  

  

  since the roots are rational, 2 4p q  is a perfect square. 

  If p is even, 2p  and 4q are even and hence 2 4p q , is an even integer and hence, 

2 4p p q    is an even integer and hence, 
2 4

2
p p q  

 is an integer. 

  If p is odd, 2( 4 )p q  is odd and 2 4p p q    is an even integer and hence, 
2 4

2
p p q  

 is an integer and hence, the result. 

Question 11.  Find all pairs of natural numbers, the difference of whose squares is 45. 

Solution : Let x and y be the natural numbers such that 2 2 45x y   where .x y  

       ( )( ) 45x y x y    

  so, both ( )x y  and ( )x y  are the divisors of 45 and ,x y x y    where x and y are 
positive integers. 

  So,    1,x y   45x y       …(1) 
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     3,x y   15x y       …(2) 

     5,x y   9x y       …(3) 

  Solving (1), (2) and (3), we get 
  (a) 23, 22x y   

  (b) 9, 6x y   

  (c) 7, 2x y   

  so, the pairs of numbers satisfying the condition are (23, 22), (9, 6), (7, 2). 

Question 12. Show that any circle with centre ( 2, 3)  cannot pass through more than one lattice point. 

  [Lattice points are points in cartesian plane, whose abscissa and ordinate both are integers.] 

Solution : If possible, let ( , ), ( , )a b c d  be two lattice points on the circle with ( 2, 3)  as centre and 
radius ‘r’. 

2 2 2 2 2( 2) ( 3) ( 2) ( 3)a b r c d         

       2 2 2 2 2( 2 3 ) 2( 2 3 )a b c d a b c d        

               2 2( ) 2 3( )a c b d     

  Since 2  and 3  are irrational numbers and 2, , ,a b c  and d are integers 
2( ) 2 2( ) 3a c b d    is irrational as 2  and 3  are unlike irrational numbers and 
hence, adding 2k  and 3l  where k and l are integers does not give a rational number. 

  But the left hand side 2 2 2 2a b c d    is an integer. It is a contradiction and thus, the 
circle with ( 2, 3)  as centre can pass through utmost one lattice point. 

[Note : You may know that the equation of the circle whose centre is ( , )g f   and radius r  given by 

2 2 2 2 22 2 0x y gx fy g f r        

for the circle            2 2 22 2 2 3 (5 ) 0.x y x y r        

If it passes through the origin, then 
25 0r   or 5,r   so the one lattice point that lies on the circle with centre ( 2, 3)  and radius 5  is 

(0, 0). But it is not necessary that there exists at least one lattice point for circles with such centres.] 

Question 13. Find all positive integers n for which 2 96n   is  perfect square. 

Solution : Let              2 296 ,n k   where .k N  

  Then             2 2 96k n   

    1 5( )( ) 96 3 2k n k n      

  Clearly k n  and hence, 0.k n k n     
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  Since 3 is the only odd factor, both k and n are integers. We must have k n  and k n  
both to be either even or odd. (If one is odd and the other even, then k and n do not have 
integer solutions). Also both k n  and k n  cannot be odd as the product is given to be 
even. So the different possibilities for ,k n k n   are as follows. 

     2k n   48k n       …(1) 
     4k n   24k n       …(2) 
     6k n   16k n       …(3) 
     8k n   12k n       …(4) 
  So, solving separately Eqns. (1), (2), (3) and (4), we get 23,n   10, 5, 2. 

  So, there are exactly four values for which 2 96n   is a perfect square. 

     23n   gives 2 223 96 625 25 .    

     10n   gives 2 210 96 196 14 .    

     5n   gives 2 25 96 121 11 .    

     2n   gives 2 22 96 100 10 .    
Question 14. There are n necklaces such that the first necklace contains 5 beads, the second contains 7 

beads and in general, the tth necklace contains  i beads more than the number of beads in 
( 1)i  th necklace. Find the total number of beads in all the n necklaces. 

Solution : Let us write the sequence of the number of beads in the 1st, 2nd, 3rd, ..., nth necklaces. 
    5, 7, 10, 14, 19, ...  

    ( 1)(4 1), (4 3), (4 6), (4 10), (4 15), ..., 4 2
n n          

 

         nS   Total number of beads in the n necklaces 

           times

( 1)4 4 ... 4 1 3 6 ... 2n
n

n nS 
          

               4n   Sum of the first n triangular numbers. 

               214 ( )2n n n     

               214 ( )2n n n      

               1 ( 1) (2 10) 1 ( 1)4 2 6 2 2
n n n n nn        

 

               ( 1) (2 1) ( 1)4 12 4
n n n n nn   

    

               1 [48 2 ( 1)( 2)]12 n n n n     
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               2[ 3 26].6
n n n    

Question 15. If a, b, c are any three integers, then show that 3 3 3 3 3 3( )( )( )abc a b b c c a    is divisible 
by 7. 

Solution :  Le us find the value of 3a  (mod 7) for any .a Z  

  As a (mod 7) is 0, 1, 2, 3, 4, 5 or 6, 3a  (mod 7) will be only among 0, 1 or 6. 

  Now, if 7 divides one of a, b, c, the given expression is divisible by 7. If not, then 3 3 3, ,a b c  

(mod 7) will be only among 1 and 6. Hence, two of them must be the same, say 3a  and 
3b mod 7). 

   3 3( )a b  (mod 7) = 0. The given expression is divisible by 7. 

Question 16. Show that 99 99 99 99 991 2 3 4 5     is divisible by 5. 
  The given expression may also be written as 

99 99 99 99 99(1 4 ) (2 3 ) 5     

  Now     99 99 98 97 981 4 (1 4)(1 1 .4 ... 4 )      5 (say)p   

  Similarly                   99 992 3 5 q    say 

   Expression is equal to 
995 5 5p q  5 r   (ay) 

  where p, q, r are integers 
   5 divides the given eumession as 5r is divisible by 5. 
Question 17. Ram has four different coins with values as shown on the right. Suppose you had just one of 

each of these coins (4). 
  How many different amounts (value) can be made using one or more of the four different 

coins ? Explain. 
Solution :  Let us list the possible amounts : 

1 2

4 8
 

   1. Coin : This produces 1, 2, 4, 8 
   2. Coin : They produce 3 = (1 2);   5 = (1 4);     9 = (1 8)  

       6 = (2 4);  10 = (2 8);   12 = (4 8)  

   3. Coin : They produce  7 = (1 2 4),   11 = (1 2 8),   

       13 = (1 4 8);   14 = (2 4 8);   
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   4. Coin ; They produce  15 = (1 2 4 8)    

   There are 15 different amounts that can be made. 
   These amounts are the first 15 counting numbers. 

Question 18. Show that 93 9919 13  is a positive integer divisible by 162. 

Solution : Let 93 9919 13 (say)    

  Now 162 (2) (81)   since 9319  and 9913  are both odd one with add, their difference is 
even and hence divisible by 2 we have to show that   divisible by 81. 

  Now       93 9319 (18 1) (93)18 1     (mod 81) 

              1675(mod 81) 55(mod 81)   

  Also        99 9913 (12 1) (99)12 1     (mod 81) 

               1189(mod 81) 55(mod 81)   

   13 9919 13 0   (mod 81) 
  Thus         162 (2)(81)  divides  ] 

Question 19. Show that 93 9919 13  without using tables/calculation. 

Solution :   
219 361 2;

13 169
    
 

 
2

419 2 13;
13

    
 

 

             8 919 13  

        88 9919 13  

  and                     93 9919 13 .  
Question 20. Let p be a prime number > 3. 

  What is the remainder when 2p  is divided by 12 ? 

  3p   and prime so p is odd. 

  ( 1)p   and ( 1)p   are both even 

    2/ 1p   and 2/ 1p   

  i.e.,  24/ 1p           …(1) 

  Also, ( 1), , ( 1)p p p   are consecutive integers. 

   One of them must be divisible by 3. But 3/p  

        23/ 1p       …(2) 

  212/ 1p   from (1) and (2) 

   when 2p  is divided by 12, the remainder is 1. 


